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This paper analyses the local behaviour of the quadratic function approximation
to a function which has a given power series expansion ahout the origin. It is shown
that the quadratic Hermite·-Pade form always defines a quadratic function and that
this function is analytic in a neighbourhood of the origin. This result holds even if
the origin is a critical point of the function (i.e., the discriminant has a zero at the
origin), If the discriminant has multiple zeros the order of the approximation will
he degraded but only to a limited extent. (1990 Academic Press. Inc

1. INTRODUCTION

This paper is concerned with the properties of the quadratic Hermite­
Pade approximation. This approximation may be defined as follows (see,
for example, Della Dora [3J or Baker and Lubinsky [2J).

Let f(x) be a function, analytic in some neighbourhood of the origin,
whose power series expansion about the origin is known. Let A o, AI'
A 2 E Z + and ao(.x), a 1(x), a 2(x) be polynomials in x with deg(ai(x)) ~ Ai'
iE {G, J, 2}, such that

( 1)

Note that such aJx), not all zero, must exist since (1) represents a
homogeneous system of An + A 1+ A 2 + 2 linear equations in the
A 0+ A I + A 2+ 3 unknown coefficients of the U i (x). Then set

u 2 (x) Y(X)2 + UI(X) y(x) + uo(.x) = G

and attempt to solve this equation for y(x) in such a way that y(x)
approximates fix).

In the well-known case of Pade approximation (Baker [1 J) the same
procedure is followed for al(x)f(x)+uo(.x)=O(xAI+Ao+l) which gives
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384 BROOKES AND MCI"INES

r(x) = -(/n(.')/(/I(x). If a l (O)7"cO (not a serious restriction) it then follows
that r(x)=/(x)+0(x 4111 4" I). However, in the quadratic case it is not
obvious that (/2(.') r(x)2 + (/,(x) y(x) + (/n(\) = 0 yields even an analytic
approximation to /(x), still less that it defines a function y(x) such that
y(x)=/(X)+0(X411+41+4:+2). The purpose of this paper is to show that
an analogue of the Pade result is in fact true.

2. NOTATIO"i

It will be assumed that

L (/,(x) /(x)' = O(x' , 2),
,- n

where N?o L, A, and that Li 10/(0)1 7"c 0, Note that if x' is a common factor
of the a/(x), j E {O, 1,2) (r maximal) then

2 a(x)L _/_,- ((x)' = O(x\ + 2 ')
/ () Xl .

so that this second assumption is not a serious restriction.
The following notation will be used:

(i) An approximation derived from LJ- n al') /(x)/ = O(x' + 2) will
be referred to as a (A 2 , AI' An) (quadratic) approximation to /(x).

(ii) By~ we mean the principal square root of D(x).

(iii) Let D(x)=adx)2-4a2(x)(/n(.')' If L/aj(x)y(x)i=O then

y(x) = (-al(x) ± J D(x))/2a2(x) and ±JD(x) = 2a2(x) y(x) + a,(x) =

(C/CY)(L/ ai(x) y(x)l).

3. THE PRINCIPAL RESULTS

The problem divides itself into two cases, the case D(O) 7"c 0 and the case
D(O) = O.

3.1. The Case D(O) 7"c 0

THEOREM 1. I( D(O) 7"c 0 then there exists a unique/unction y(x), analytic
in a neighhourhood o( the origin, satisf.l'ing Liai(X) y(x)/=O and
y(O) =/(0).

Proof: The existence of a function y(x), analytic about the origin,
satisfying Li ai(x) y(x)/ = 0 follows from standard algebraic function
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theory (see, for example, Hille [4, Theorem 12.2.1]). However, in this
special case it is easier to argue as follows.

Suppose a2(0) # O. The two possible expressions for y(x) in a
neighbourhood of the origin are given by

y(x)

or

y(x)
--adx) + './D(x)

2a2(x)

Since D(0) # 0 these are both analytic in a neighbourhood of the origin.
Exactly one of them satisfies y(O)=/(O) because a2(0)/(0)2+ a ,(01/(0)+
<10(0) = 0

=/(0)
a,(O) ± JD{Oj

2a2(0)

Suppose <12(0)=0. Then a](O)#O (again since D(O)#O). Near the origin
the two possible expressions for y(x) can be written as

(2)

or

(3)

The right hand side of (3) is unbounded as x -+ 0 so we can exclude this
possibility. Since a2(0) = 0, close to the origin we can apply the binomial
theorem to get from (2) the convergent power series (analytic in a
neighbourhood of the origin) expression for y(x):
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Noting that III = -1/2 it follows that

,\:=0

is the only function, analytic in a neighbourhood of the origin, satisfying
IJa/(x) y(x)/=O with y(O)=/(O). I

THEOREM 2, Il D(O) i= 0 then there exists a unique jimetion v( x),
analytic in a neighhourhood ol the origin, satLlh'ing Ii a/Ix) v(x)' = °sueh
that

y(x)=f(x)+O(x\ f 2),

Proof Note that

d
'

[ ']1 d
' L JI-iI Iai(x)y(x)' =O=-dI Ia/(x)f(x)l ,

ex / 0 X / II

For i = 1

iE iO, ... , N+ I}. (4)

[ a ( .) dl' (' d )]1?y I a/Ix) y(x)J d, + I dx (a/C,)) y(x)/ 11=0

l(~(I ai(x)!(XY ) ~ +(I d: (ai(x))!(X)) Jill =0.

Differentiating again (i = 2) gives

[
C ( ) efl' d ( i" ( ,)) dl'~ Iai(X)y(xV d'2 +-j ;],' Ia/(x)y(xV -i'
0\ x ex C,l ex

+~(I~(a;ix))y(x)i)ll=0
dx dx JII

r? ( ..) d
2

l d (i" ( . ,)) dfal I a,(x).f(x)' dx 2 + dx al I a/Ix) f(xV dx

d I d)J'1+-d{I-
i

(ai(x))f(xV =0.
.\ \ ex 0
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In a general, more compact form we have

387

l(~~, (I a;(x) .1'(X)I) :~.~; + ~illo = 0 = l(~~ (I al(x) f(x)/) ~.:, + zillo'
iE (L ..., N + I}, (5)

where

d
~l = I - (a;(.x)) .1'(x)l,

dx

(
dv diV) d~ d')' d ( r )

~i+l=~i+l x,.1'(x),-/' '''·'-/·i =-/'+-/'i-/ -;;-. Ia;(.x).1'(x)/,{ x {X , {, x {X {X 1.'.1'

(
, dl d'!)

Z',l=~i+l x,.I(x)'-/'''·'-/i·
(X (X,

Now, taking thc uniquc .1'(x) from Theorem 1 it is seen that since
±viD(O) = (cijD.1')(L al(x) .1'(x)J)lo "'" 0, Eq. (5) with i = 1 gives (dfldx)lo =
(d.1'jdx)lo, which with i = 2 gives (d 2fjdx 2 )lo = (d 2.1'jdx2 )lo' It follows that

i.e.,

dII dlYI
dx i

0 = dx i
0'

iE{O, ...,N+l},

.1'(x) =f(x) + O(x N+ 2). I

3.2, The Case D(O) = 0

We now investigate the case D(O) = O. This implies that a 2 (O) "'" 0 (since
if D(O)=al(O)2~4a2(O)aO(O)=O and a2(0)=0 then adO)=O, which with
a2(0)f(O)2+ a1 (0)f(0)+ao(0)=O gives ao(O)=O; this contradicts the
assumption that Li la;(O)1 "'" 0).

Bearing in mind that y(x)=(~al(x)±~)j2a2(x)and JD(x) is
not now analytic at the origin this case does not seem well-behaved, but
such is not the case. Certainly if D(x) has a root of odd multiplicity at the
origin then any .1'(x) satisfying L

1
a/x) .1'(x)l = 0 is not analytic at the

origin since

d re
' ~() II

. . /xg x
lin --I v x r --+ ex;

r-O dx r + a(x) I

(g(O)""'O).

[Take, for example, xfi. Then (d 2 jdx2)(xfi) = 3j(4fi). This generalises
easily (using the Leibnitz rule) to the above.] However, this case never
occurs in practice,
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First, it is necessary to treat two special cases:

(i I Suppose (/o(x) =:= O.

Then

(/2(X I /l\)2 + a d.\) /(\) = O(x' 12)

= (a 2(x)/(.\)+a l (\))/(x)=0(x\' 2)

so that

-(/I(.\)/a2(x) =/(x.) + 0(\1i)1

o =/(x) + 0(.1") f
Choosing

where R+S=N+2.

gIves y(x) such that

{

r(.\) =

.1'(x)=O

a dx)

a 2(x)
if R> S

otherwise

La;(x) y(X)I=O

and l'(X) = /(x) + O(xmax
: Ii.S:). (Clearly max {R, S} ~ N/2 + 1.)

(ii) Suppose D(x) =:=0. Then

a 2( x) /( X)2 + a l (x) /(x) + a o(\) = O(x v + 2)

=(2a 2 ( x ) / (x ) + a dx ) )2 = 4a 2 ( x) 0 (x v + 2 ) = 0 (x v + 2 )

adx). r
=y(x)= ---=f(x)+O(x ),

2ak\}

and ~,(l,(x) .1'(x)I=O.

I t will be assumed for the remainder of this section that neither D(x) =:= °
nor a()(x) =:= 0.

THEOREM 3. Let C
1
= deg(a,(x)). Then D(x) never has a root of

multiplicity greater than ~, C at the origin.

Proof Let ~IC=M and suppose D(X)=X'f+lpr(X), PrIx) a polyno­
mial of degree r. Since a 2(x), ao(x) 't- 0, then

(6)
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where q,(x) is a (nonzero) polynomial of degree s. We must have
M + 1 + r = 2C I (since C c+ Co ~ M < M + 1) so that qJx) = 4ao(x) a c(.')'
Also s + C I = Co + Cc + C I < M + 1 = 2C I - r = s + r < C l' Differentiating
(6)

2a 1(x) a'l(x) = xM((M + 1) Pr(x) + xp;(x)) + q',(.')

=2xadx) a'dx) = x M
+ I((M + 1) Pr(x) + xp;(x)) + xq;(x)

= x M+ I prc,) + qJx),

where

(7)

Pr(x) = (M + 1) Pr(x) + xp;(x)

q,.(x) = xq;(x) (degree s).

From (6) and (7) (eliminating the term in x\1 + I)

(degree r)

(8)

The left-hand side of (8) either has degree ? C I or is identically zero,
while the right-hand side has degree ~ s + r < C I' It follows that

Pr(x) al(x) - 2pr(x) xa'l(x) = °= q,(x) Pr(x) - Pr(x) qJx).

Hence

a'l(x)

al(x)

and integrating gives

Pr(X)

2xPr(x)

qJX)

2xq,.(x)

q'Jx)

2q,(x)

al(x)=kJq,(x), kER.

But degJqJx)=s/2<C 1 so the result is proved by contradiction. I

THEOREM 4. D(x) never has a root of odd multiplicity at the origin.

Proof Suppose D(x)=XC'+l g (X), g(O)*O. By Theorem 3 it can be
assumed that 2s + 1 < N + 1. Then

(9)

d' I-jiD(X) =0,
(X 0

. {O ') \IE, ... , ~s J' (10)
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Let G(X)=(2a2(X)((x)+a,(x)). Then

([2(X) ((X)2 + ([1(X) ((x) + ([o(x) = O(x v
+ 2)

=G(X)2 - D(x) = 4([2(X) O(X V+ 2) = O(xV+ 2). (11)

From (10) and (11)

d' I-G(X)2 =0,
dx' 0

i e i0, ... , 2.1'] ( 12)

i e {O, ... , s}.

, (i) (j! d' I I= I . -jG(X)-i-jG(X) =0,
I~O } dx dx 0

d' I=--G(x) =0,
dx' II

i e {O, ... , 2.1' :

[Expanding the first few equatIOns,

G(x)2111 = 0 = G(x)11I = 0

d
d G(X)21 =O=[G(x)G'(x)+G'(x)G(x)Jlo=O
x 0

d
d"" G(X)2! = 0 = [G(x) G"(x) + 2G'(x)" + G"(x) G(x)JIIi = 0
X II

= G'(x)11I = oj
d"'+' I

= dx2' I' G(x)" 0 =0

Hence the result is shown by contradiction. I

THEOREM 5. If D(x) = x 2'g(x), g(O) # 0, 2.1' < N + 1 then either

-([I(X) + x' Jg(x)
v( x) = --"---------'----"----
. 2a 2(x)

or

-a,(x) -x'vg(x)
y( x) = ---'-'---'-------"-::.:...:.......:.

2a 2(x)
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and y(x)=f(x)+O(x Y +
2 ').

Proof Let h(x)=x'Jg(x). Then G(x)2-h(x)2=O(XY + 2) (G(x) as
defined in the proof of Theorem 4)

d
l

1 d
l

I=-"G(X)2 =-d_,h(x)2 ,
d.\ 0·\ 0

iE{0, ... ,N+1}. (13 )

Also (dlldx') G(x)2Io = 0 = (dlldx') h(X)2Io, i E {O, ... , 2s -- I}, so
(dlldx')G(x)lo=O=(dlldx')h(x)lo, iE{O, ...,s-l} (using ideas III the
proof of Theorem 4). But (d 2'/dx 21 ) G(:\Ylo = (d 2'ldx 21 ) h(X)2Io #0

(
dS 1)2 ( d' 1 )2= -sG(x) = -,h(x) #0.
dx 0 dx 0

Now choose t(x) = h(x) or t(x) = -h(x) so that (d'ldx')i G(x)lo =
(ei'ldx ' ) t(x)1 o. Then Eq. (13) with i = 2.1' + 1 gives

d
2s

+
l

1 d
2s

+
1

1~+lG(X)2 =-2.+1 t(X)2
d:c ' 0 dx s

0

(
d

l

d'+l )1 (d S

d' +
l )1= -dsG(x)-j,.,+IG(X) = -jst(X)d'+lt(X) .

x ex 0 ex x 0

We progress in this way up to i = N + 1 (note that if 2s = N + 1 this
procedure is not required).

It follows that

d
l

I d
l

1-,G(x) =-,t(x) ,
dx odx 0

i E {O, ..., N + 1- .I' },

i.e., 2a2(x)f(x)+adx)=t(x)+O(x Y +2- 1
). Since a2(0)#O, defining

gives y(x) =f(x) + O(X N +2 S). I

4. ILLUSTRATIVE EXAMPLES

This paper is an attempt to answer many of the practical questions
which arise when one actually tries to compute the quadratic approxima-
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tion to some function. The seemingly exceptional cases covered by the
previous theorems do frequently occur as is shown below.

EXAMPLE 1. Let I(x) = log( 1 + x). Then x/(x)" + (-6x - 12) I(x) +
12x= 0(x5). Also

6x + 12 - V (6x + 12)" - 48x 2
.1'(x) = --------"-------

2x

.,2 Xl .,4 29x5
=x--+---+--+ ...

2 3 4 144 .

i.e., y(x)=I(x)+0(x5) (ef. the case u"(O)=O in the proof of Theorem 1).

EXAMPLE 2. Let I( x) = log( 1 + x).

(-9x 2 - 18x)I(x) + 24x2
= O(x x). Note

900x2
.

Also

Then (x 2 - 6x - 6) I(x)2 +
that D(x) = -15x4 + 900x' +

9x2+ 18x - x V - 15x2+ 900x + 900
r(x) = )
. 2(r-6x--6)

x 2 x' x 4 X x 6 1543x7

=x--+---+---+---+ ..
2 3 4 5 6 10800

i.e., y(x) = I(x) + O(x 7) as predicted by Theorem 5.

EXAMPLE 3. Let

Then I(x)2 - 2x5I(x) - Xii = O(x IX
). Note that D(x) = 4x" + 4x 10

. Also

y(X)=X 5+X5 x+1

, x 6 x 7 XX 5x~ 7x l0

=2x +---+---+--
2 8 16 128 256

21x ll 33x l2 429x 13

- 1024 + 2048 - 32768 + "',

i.e., y(x)=f(x)+OC'Y) as predicted by TheoremS.
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5. SEQUENCES OF QUADRATIC HERMITE--PADI= ApPROXIMATIO",S
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In this section it is shown that almost any "increasing" s'~qucnce of
Hermite-Pade forms yields a sequence of approximations with increasing
order of accuracy.

Let R=max{rEN:f(x)=()(x'n and let ;(A~. A'I' A;I)' A;. iEN! be
a sequence of number triples satisfying:

0) A~+A;)+I?-R

(ii) (A;)+A;)/2?-R

(iii) lim;. f Li A;= x.

(i) and Oi) are minor conditions, avoiding undue degeneracy of
corresponding Hermite- Pade forms (see the following lemma), while (iii)
ensures that such a sequence of forms has increasing order.

Let {(a~(x), a; (x), a;)(x)): i EN} be a sequence of polynomial coefficients
of Hermite Pade forms corresponding to {( A ~, A'" A;,): i EN}.

LEMMA 6. Vi E N at least two of the coefficients {a~(x), a; (x), a;)(x) } are
not identically zero.

Pro()j: If a~(x) == 0 == a; CX') then a~(x) = O(XAh + 2) which is impossible.
If a~(x)==O==a~(x) then

a;(x)f(x) O(XA~+A'1 + A:1+2)

~f(x) O(XA~+A:,+2)

which contradicts (i) above.
[f a; (.x) == 0 == a~(.\) then

a~(x)f(x)2 O(XA~+A'I+A;,+2)

~f(X)2 O(XA',+A;,+2)

~f(.\) O(X IA ',hl;,+2)i 2)

which contradicts (ii) above. I

THEOREM 7. Let {[A ~, A;, A~]: i EN} be a sequence of Hermite--Padi!
.limns with the above properties. Then each [A~, A;, A~] gives a quadratic
approximation to f(x) such that

(i) Yi(x)=f(x)+O(X"i)

(ii) lim i _
T

l1 j =oc.
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Proof Let iEN, r)=max{rEN: x'la;(x), VjE{O, 1,2}} and a;(x)=
J,)() . fO 12 1 Th " )(,)!'('j'_0(\·N.t2 r')(where.",-".A')x gj x , .J E I ' , i' en L..j g, X . .\ - . ", - L.., j'

Using the previous results, there exists y)(x) a quadratic (possibly
rational or polynomial) approximation such that

v,(x j = f(x) + O(x l \. ;' ',I 2).

Since x"la;(x), ViE to, 1,2:, and at least two of the a;(x) are not
identically zero then

N,?2r,.

Consider the sequence (NI-r): iEN}. Since lim)~ I NI=x and NI-r)?
N)-NJ2=NJ2 then lim)..,(N)-r))=x. Letting n)=(NI -r)+2)/2 it
follows that lim I ~ J. n) =x and the result is proven. I

6. CONCLUSION

These results show that given a2(x)f(x)2+ a, (x)f(x)+ao(x)=
O(x N +2), L;~o la)(O)1 #0 then we can always find y(x) such that

L;~o a)(x) y(xf = °and y(x) = fix) + O(x"") where K is, at worst, N/2 + I.
This is summarised in Table I.

It then follows that most increasing sequences of quadratic Hermite
Pade forms give sequences of quadratic approximinations of increasing
order of accuracy. It is hoped that this work will be useful in attempting
to extend convergence results such as that given by Baker and Lubinsky
[2J to the so-called "non-normal" case in quadratic approximation.

TABLE I

Case

D(x) = x"g(x)

where g(O) "" 0
2s<N+!
ao(x) '$ 0

K

N+2

N+2-s

and
D(O)=O
ao(x)=O

D(x)=O

min{kEN: k ~ (Nj2) + I:

mi n {kEN: k ~ (N /2 )+ 1 :
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